Radiological Terrorism: Clinical and Public Health Aspects

Satellite Conference Thursday, March 16, 2006 12:00-1:30 p.m. (Central Time)

Produced by the Alabama Department of Public Health Video Communications and Distance Learning Division

Disclosure

 The opinions expressed by the speakers are not necessarily shared by the Centers for Disease Control and Prevention.

Objectives

- Delineate the types of radiation incidents
- Review basic principles of radiation physics
- Discuss clinical consequences of radiation injury

Objectives

- · Review historical incidents
- Set up plans for public health response, hospital decontamination and performance of radiation detection safely
- Discuss available therapeutic measures for radiation injuries

Recovered transport container

Sources used in mobile irradiators containing 3500 Curies of Cs-137 (Former Soviet Union)

Types of Threats

- Radioactive dispersal device including the "Dirty Bomb" (RDD) scenario
- Simple radiological device
- · Nuclear weapon detonation
- Improvised nuclear device (IND)
- · Nuclear power plant accident

Simple Radiological Device

Nuclear Weapon Detonation

- August 1945
- Hiroshima: Little Boy made of Uranium (15 KT)
- Nagasaki: Fat Man made of Plutonium
- Damage and mortality secondary to Nuclear weapon detonation:
 - -Thermal blast (35%)
 - -Radiation (15%)
 - -Shock (50%)Contamination from radioactive fallout

Improvised Nuclear Device (IND) Chairman Dan Burton Committee –

Chairman Dan Burtor Committee – Demonstration of example "suitcase nuke"

Ionizing Versus Non-ionizing Radiation

- Non-ionizing radiation (micorwaves, UV): does not interact with other atoms
- lonizing radiation interacts with human body through direct and indirect effects:
 - Directly interacts with critical biological molecules in human cell such as DNA
 - Indirectly interacts with cell water to produce toxic free radicals

Fundamental Principles of Radiation Protection in Whole Body Exposure

Time

Distance

Shielding

Two Types of Radiation Hazards

- 1. Body exposure:
 - Partial body exposure
 - Whole body exposure
- 2. Contamination:
 - External skin contamination
 - Internal contamination (from ingestion or inhalation or from open wounds)
 - Skin absorption is not clinically significant

Types of Ionizing Radiation: Alpha Particles

Types of Ionizing Radiation: Beta Particles

Types of Ionizing Radiation: Gamma Rays

- · Gamma rays
 - Electromagnetic waves
 - Gamma rays are similar to x-rays
 - Are a significant external hazard (depending on duration of exposure, distance from the source, and type of shielding)

Types of Ionizing Radiation

- Neutrons secondary ionization
 - Uncharged. Causes whole body irradiation like Gamma rays.
 - Emitted from fission reactions such as during a nuclear detonation, a nuclear reactor or criticality accident.

Radiation Units

- *RAD* = 1cGy
- 100 RAD = 1 Gy
- 100 REM= 1 Sievert

Radiation Detection

REAC/TS and CDC

Decontamination

- · Soap and water
- Decontamination should proceed in a centrifugal manner

Decontamination

 Perform systematic patient (and personnel afterwards) decontamination.

Clinical Syndromes

- Acute Radiation Syndrome
- Internal Contamination
- Local Radiation Injury

ARS: Hematopoetic Syndrome

- · Complications: infection and bleeding
- Treatment is supportive:
 - -blood products
 - -antibiotics
 - colony stimulating factors such as filgrastim or G-CSF (Neupogen®) available in the SNS
 - Allogenic transplant

Other ARS phases: Gastrointestinal syndrome CV/CNS syndrome

Radionuclide	Medication		
lodine	KI (potassium iodide)		
Transuranics such as Plutonium & Americium	Zn-DTPA Ca-DTPA		
Uranium	Bicarbonate		
Cesium	Prussian Blue*		
Rubidium	[Ferrihexacyano- Ferrate(II)		
Thallium Tritium	Water		

Radioactive Iodine Exposure Treatment

- Iodine Prophylaxis and Treatment
 - Potassium iodide (KI) is an effective, inexpensive thyroidblocking agent.

Cesium-137

Prussian blue (In Days, by Age, and Dose of Insoluble Prussian blue)							
Group	Age (Years)	Insoluble Prussian blue dose (grams/day)	No. of Pts.	During Insoluble Prussian blue Treatment - ¹³⁷ Cs T _{1/2}	Off Insoluble Prussian blue Treatment - 137Cs T _{1/2}		
Adults	> 18	10	5	26 ± 6 days	80 ± 15 days (all		
Adults	> 18	6	10	25 ± 15 days	21 adult patients)		
Adults	> 18	3	6	25 ± 9 days			
Adolescents	12 -14	< 10	5	30 ± 12 days	62 ± 14 days		
Children	4-9	< 3	7	24 ± 3 days	42 ± 4 days		

Local Radiation Injury

- May occur with or without ARS
- Deterministic effect
- Complications may be delayed
- Management includes pain control, antibiotics and surgery
- Hyperbaric oxygen therapy

Yanango, Peru. Feb 20,1999

- Iridium source loss
- Picked up by worker and put in his back pocket
- The patient developed severe radiation burn in his pelvic area as well as ARS
- · He survived with significant disability

Yanango - Peru May and December,1999

Patient treated in France

May 1999 =

December 1999

Local Radiation Injury

- May be divided into 5 types:
 - -Epilation
 - -Erythema
 - Dry desquamation
 - -Wet desquamation
 - -Necrosis

Worker in Iran who placed an Iridium source in his coat pocket for two hours

Patient from Goiania Incident (IAEA)

Moist Desquamation

Necrosis

All Emergencies Are Local

Terrorist Attack

Local Public Health Response Organizations

State Public Health Response Organizations

Federal Public Health Response Organizations

The National Response Plan

National Response Plan

Nuclear/Radiological Incident Annex

- Department of Homeland Security coordinates the Federal response to radiological Incidents of national significance.
- Department of Justice has lead responsibility for criminal investigations.
- Coordinating Agency is determined by the type of emergency.
- Department of Health and Human Services is a cooperating agency.

State and Local Public Health Response

- Monitor workers' health and safety.
- Assure safe shelters and healthy food and water supplies.
- Coordinate sampling and laboratory analysis of samples.

State and Local **Public Health Response**

- Field investigations and monitoring of people including creation of registries.
- Criteria for entry and operations at the incident site.
- Disease control and prevention measures.

Medical Support

- Evaluate health and medical impacts on the public and emergency personnel.
- Develop medical intervention recommendations.
- · Treat impacted citizens.
- Request Strategic National Stockpile.

In Summary

- Radiological terrorism is a heterogeneous problem.
- Three types of clinical syndromes may occur alone or in combination.
- First responders are able to care for victims safely if they take appropriate precautions.
- Medical management may be complex and will require a close collaboration between Federal and State public health entities.

More Information

- CDC Radiation Emergencies www.bt.cdc.gov/radiation
- Department of Homeland Security www.dhs.gov
- Environmental Protection Agency www.epa.gov/radiation
- Nuclear Regulatory Commission www.nrc.gov/what-we-do/radiation.html
- Conference of Radiation Program Control Directors www.crcpd.org